SA WG2 Temporary Document

Page 6

SA WG2 Meeting #127bis
S2-184816
28 May - 1 June 2018, Newport Beach, USA
(revision of S2-18xxxx)
Source:
Deutsche Telekom

Title:
Solution proposal “Amendments to Service Interaction model” to address key issue “Improvements to service framework related aspects”

Document for:
Approval

Agenda Item:
6.19

Work Item / Release:
FS_eSBA / Rel-16

Abstract of the contribution: This contribution proposes a solution that addresses key issue "Improvements to service framework related aspects” with respect to functionality that is common to all services.
1 Proposal

This document proposes to add following solution addressing key issue “Improvements to service framework related aspects” to TR 23.742.
* * * Start of Change 1 (ALL TEXT IS NEW)* * *

6.x Solution #X: Amendments to Service Interaction model
6.x.1 Introduction

This solution addresses key issues 3 “Improvements to service framework related aspects”.

The service based architecture of R15 inherits aspects from the reference point based p2p interaction concepts. In this direct interaction model the services itself have several responsibilities that are not part of the services’ own business logic. Service instances have, for example, to discover other service instances as their communication peers, to select one of them, to supervise the message flow, to perform message authorization actions and to maintain the communication relationship with the selected peer for subsequent transactions.

This puts some redundant burden on the implementation of the services which can limit the development and deployment agility and interoperability. But even more critical, the delegation of some of these responsibilities to the services can cause limitations for automation flexibility and for customer service availability, especially in case of service failures, and therefore have a negative influence on the overall system availability and reliability.

This solution proposes a amendments to the service interaction model that addresses these issues outlined above on architectural level.
6.x.2 High level description

This solution covers two main aspects which are shortly discussed in the next sub-sections:

· Reduction of the complexity of the services

· Improvement to the overall system reliability and availability

6.x.2.1 Reduction of service complexity

This aspect addresses the reduction of the service complexity by identification and extraction of functionality that is common to all services and placing it into a component outside of the actual service.

These common functionalities include:

· discovery of communication peers

· selection of communication peers, including load-balancing

· delivery of messages between communication peers, and matching of responses

· policy enforcement, authorization of the message delivery

· handling of addition, removal and replacement of service instances

6.x.2.2 Reliability improvements
This aspect addresses the way how service instances communicate with each other. Today the services itself have the responsibility for the discovery and selection of peers for inter-service communication and for keeping the state of these communication relationships alive for subsequent transactions. This behaviour is based on the assumption and pre-condition that both communication peers are highly available and reliable themselves, which is not valid anymore in a cloud based deployment environment.

In case of service failures in one service instance, each corresponding communication peer must be notified about it and perform failover strategies to find and connect to a replacement peer service instance and to restore and synchronize the communication and application state.

This solution removes the need for such failover mechanisms to be implemented as part of every service.

6.x.2.3 Solution Preconditions, Assumptions and Requirements

Preconditions:

· there is no long-living binding between service instances and application context

Note: This precondition can be fulfilled e.g. by separation of “compute” resources from “storage” resources.

Assumptions:

· There exist a mechanism (e.g. Service Mesh, messages oriented middleware …) to decouple communication peers from each other, in order to:

· Remove the need for implementation of peer-discovery, -selection and -binding from each service

· Remove the need for implementation of dedicated failover strategies from each service

· That mechanism provides an API that allows service instances to send messages to a special type of peer service (not a dedicated instance).

· That mechanism provides an API that allows service instances to receive messages from another service instance.

· That mechanism has internal functionality to perform peer-discovery and -selection on behalf of the sending service instance.

· That mechanism can deliver messages from the sending peer to the selected receiving peer.

· That mechanism optionally provides means to perform peer-binding, if required for certain communication patterns.

· That mechanism is message content agnostic, i.e. support any payload.

· That mechanism supports authorisation and enforcement of policies for the delivery of messages.

Requirements:

· The service logic must be designed to be interoperable with the selected mechanism.

· The services shall be able to use the APIs, provided by the selected mechanism.

6.x.2.4 High-level Solution’s Architecture
The following figure illustrates a high-level architecture, where common functionalities are separate from the business logic of the service implementations and provided by common service framework functionalities.

[image: image2.png]Services (Business Logic) Service Type 1 Service Type 2 Service Type n
e (L SAPA (SAPOAP') —————e oo i [e
e)
SAPo (Service Access Point) SAPo SAPo
Service Framework J
i Service Reg. Discovery Authorisation Policy Load Failover Communication
H Mgmt. Mgmt. Mgmt. Enforcement Balancing Mgmt. Mechanism

The access to the functionalities of the common service framework is offered via Service Access Point (SAPo) functional element which provides a northbound API, the Service Access Point API (SAPA) towards the services. Multiple SAPo instances (as needed by operator deployment) may exist as shown in the diagram above. The SAPA is object of standardisation by 3GPP. It defines the API for the common set of service framework functionalities.

The actual implementation of the service framework is implementation specific and not object of standardization by 3GPP. It is assumed that existing solutions (e.g. service mesh, enterprise message systems, …) can be leveraged to implement the proposed service framework solution. The Service Access Points (SAPo) are hiding such implementation details of the service frameworks behind a common API. Therefore, services shall be able to run on any service framework implementation that provides a SAPo, compatible with the specified SAPA.
The intention of this architecture is to de-couple communication peers from each other, to simplify the internal structure of the services and to overcome limitations of the traditional P2P interaction concept, especially with respect to failover handling.

The functional blocks and their role in the architecture are described in the following subsections.

NOTE: As with the NRF in Release 15 the mentioned Service Framework Functions can be slice specific or shared across slices.
Editor's note: communication mechanism impacts to roaming are FFS.
6.x.2.4.1 SAPo (Service Access Points) and SAPA (Service Access Point API)
Service Access Point is a software component that acts as an adapter between the implementation specific service framework and the services that make use of service framework functionalities. The SAPA is the “contract” between services and the SAPo, which is defined, standardised and documented by 3GPP.
The implementation of the SAPo depends on the vendor specific implementation of the service framework therefore it can be assumed that each service framework vendor will provide its own SAPo implementation. This solution proposal makes no assumption about the way how SAPo’s are implemented and provided.
6.x.2.4.2 Registration- Discovery and Authorization Management

The architecture figure depicts functional blocks for the registration-, authorization- and discovery- management as part of the service framework. This functionality correlates with the functionality of the Network Repository Function (NRF).
The SAPA must contain methods to perform registration, de-registration, authorization. SAPA does not require discovery (it is an implicit function of the framework).

Editor's note: It is FFS whether discovery on the SAPA is needed when backward compatibility is required.
6.x.2.4.3 Communication Mechanism
The Communication Mechanism is the core part of the service framework because it is in full control of the message exchange. It is responsible for the routing and forwarding of messages between consumer and producer NF instances/ NF service instances and for the automatic establishment and destruction of temporary bindings between NF instances/NF service instances when needed. Messages are in this model addressed to types of producer NFs/NF services, not to individual producer NF instances/ NF service instances. The routing mechanism takes over the responsibility of the discovery and selection of communication peers, as well as the process of the actual delivery of messages between the peers. The protocols and mechanisms for the plain message delivery are implementation specific.
The SAPA must therefore contain methods allowing service instances to delegate message delivery and receiving to the service framework. This might also include mechanism for the notification of message delivery failures.
The Communication Mechanism shall also monitor the message delivery process and might use this information for support of load-balancing as well as for the detection of failure conditions.
NOTE: Cross data center communication follows the same principles as with release 15 deployments.
6.x.2.4.4 Policy Enforcement

The described Communication Mechanism decouples the communication peers from each other and applies common procedures that all messages exchanged between communication peers. Amongst other things this allows for a common enforcement of communication related policies, if required.

For example, the Communication Mechanism may provide a policy enforcement mechanism to limit the message rate in receiving and sending directions up to discarding of messages in case of overload.

6.x.2.4.5 Load Balancing

Due to the proposed monitoring of the message delivery process, the routing management component shall have a certain degree of awareness of facts like:

· message retention/delivery times,

· delivery failures for certain message types or communication peer instances,
· overall system load, etc.

Such facts, combined with potential additional implementation specific algorithms, might be used by the service framework to apply load-balancing to the message delivery process.
6.x.2.4.6 Failover Management

A major point that this solution addresses is a drastically simplified management of failover situations. In the traditional P2P based interaction model with long-living bindings between communication peers (as specified in R15) the responsibility for failover handling is put on the service implementations.

The solution, described in this document proposes an implicit management of failover situations in the service framework and removes this burden from the service implementation. This is achieved by the decoupled, unsticky communication relations between the service instances in combination with a stateless service design (request messages are not sent to a specific instance of a service, but to a service type instead). This makes service instances in general replaceable without specific recovery procedures to be specified. If the routing management mechanism detects certain service instances being unresponsive, then the corresponding message will be routed to another service instance that can process it without impacting the customer. This ensures that only "healthy" instances are used.
E.g. a heartbeat mechanism might be introduced that allows an early detection of failed service instances and supports the health monitoring mechanism.

6.x.3 Services and illustrated Procedures

Editor's note: This clause describes services and related high-level procedures for the solution.

6.x.3.1 Registration and de-registration of NF instances/NF service instances

This section describes the high-level procedures for the registration of NF instances/NF service instances at the service framework. In general the procedures for the registration of NF/NF service (instances) are unchanged compared to R15.
Registration of NF instances/NF service instances
· the NF instances/NF service instance invokes the SAPA to register the NF/NF service

· the SAPo performs all necessary actions to adapt the registration message to a format compliant with the vendor specific service framework implementation and forwards it

· the vendor specific service framework implementation performs any required steps to handle this registration
De-Registration of NF instances/NF service instances

· the NF instances/NF service instance invokes the SAPA to de-register the service

· the SAPo performs all necessary actions to adapt the de-registration message to a format compliant with the vendor specific service framework implementation and forwards it

· the vendor specific service framework implementation performs any required steps to handle this de-registration

6.x.3.2 Delivery of messages

Delivery of a request message from Consumer to Producer

· the consumer NF instances/NF service instance invokes the SAPA to initiate a message delivery
Note: The message itself requires metadata to indicate the intended type of producer service to address.

· the SAPo performs all necessary actions to adapt the message to a format compliant with the vendor specific service framework implementation and forwards it

· the service framework might apply policies to ensure the legitimacy of that certain message transfer
· the service framework must perform all required steps to investigate and setup a routing path to a producer NF instances/NF service instance of the addressed service type
· the service framework might apply load-balancing mechanisms to influence the selection of a producer instance
· the service framework shall derive monitoring information from that message transfer
· the service framework forwards the messages to a SAPo that allows to reach the selected producer NF instances/NF service instance
· the SAPo performs all necessary actions to adapt the implementation specific message format to a format compliant with the SAPA specification and forwards it to the producer NF instances/NF service instance

Delivery of a response message from Producer to Consumer
This sequence is the same as described before except two points:

· that the roles of the producer and consumer are exchanged
· there might be no load-balancing applied, since the response shall be routed exactly to the consumer NF instances/NF instance that initiated the response.
6.x.3.3 Failover Handling Procedures

Due to the decoupled service communication and the implicit load-balanced distribution of messages to one of the registered producers of the same type there are no special procedures for failover foreseen.

One exception is the case when a consumer sends a message to a special service type and fails/crashes before it is able to receive and handle the corresponding response.

6.x.4 Impacts on existing NF/NF Services and Interfaces

The procedures for registration, de-registration and update of NF instances or NF service instances do not change on Stage 2 level.

Service implementations don’t need to handle the discovery of communication peers, the maintenance and potential recovery of the communication relationship as well as the enforcement of communication related policies.

Service implementations must register/de-register, and send and receive messages via SAPA.

Note: Impact on granularity and therefore whether NFs or NF services or both exist is studied in key issue 1 “Optimal modularization of the system”.

Editor's note: Further details regarding impacts are FFS.

6.x.5 Evaluation of the Solution

Editor's note: This clause provides an evaluation of the solution.
End of changes (all new text)

3GPP

SA WG2 TD

[image: image1]